Breaking

रविवार, 5 अप्रैल 2020

BCA 4Sem Notes- Cyrus-Beck Algorithm

  • UNIT-I 
~The Advantages of Interactive Graphics
~Representative Uses of Computer Graphics 
~Classification of Application Development of Hardware and software for computer Graphics
~Overview, Scan:
~Converting Lines
~Scan Converting Circles
~Scan Converting Ellipses



  • UNIT-II 
  • ~Hardcopy Technologies
    ~Display Technologies
    ~Raster-Scan Display System
    ~Video Controller
    ~Random-Scan Display processor
    ~Input Devices for Operator Interaction
    ~Image Scanners
    ~Working exposure on graphics tools like Dream Weaver, 3D Effects etc
    ~Clipping
    ~Southland- Cohen Algorithm
    ~Cyrus-Beck Algorithm
    ~Midpoint Subdivision Algorithm



  • UNIT-III 
  • ~Geometrical Transformation
    ~2D Transformation
    ~Homogeneous Coordinates and Matrix Representation of 2DTransformations 
    ~composition of 2D Transformations
    ~The Window-to-Viewport
    Transformations



  • UNIT-IV 
  • ~Representing Curves & Surfaces----
    ~Polygon meshes parametric
    ~Cubic Curves
    ~Quadric Surface
    ~Solid Modeling---
    ~Representing Solids
    ~Regularized Boolean Set Operation primitive Instancing Sweep Representation
    ~Boundary Representations
    ~Spatial Partitioning Representations
    ~Constructive Solid Geometry Comparison of Representations



  • UNIT-V                           

  • ~Multimedia Definition
    ~CD-ROM and the multimedia highway
    ~Computer Animation
    (Design, types of animation, using different functions)



  • UNIT-VI  

  • ~Uses of Multimedia
    ~Introduction to making multimedia –
    ~The stage of Project
    ~hardware & software requirements to make good multimedia skills
    ~Training opportunities in Multimedia Motivation for Multimedia usage

    Cyrus-Beck Algorithm

    Cyrus-Beck Line Clipping Algorithm

    Cyrus Beck Line cutting calculation is really, a parametric line-cutting calculation. The term parametric implies that we require finding the estimation of the parameter t in the parametric portrayal of the line section for the point at that the fragment converges the cut-out edge

    This algorithm is more efficient than the Cohen-Sutherland algorithm. It employs parametric line representation and simple dot products.
    Parametric equation of line is −


    P0P1:P(t) = P0 + t(P1 - P0)
    Let Ni be the outward normal edge Ei. Now pick any arbitrary point PEi on edge Ei then the dot product Ni.[Pt – PEi] determines whether the point Pt is “inside the clip edge” or “outside” the clip edge or “on” the clip edge.
    The point Pt is inside if Ni.[Pt – PEi] < 0
    The point Pt is outside if Ni.[Pt – PEi] > 0
    The point Pt is on the edge if Ni.[Pt – PEi] = 0 Intersectionpoint
    Ni.[Pt – PEi= 0
    Ni.[ P0 + t(P1 - P0) – PEi= 0 ReplacingP(t with P0 + t(P1 - P0))
    Ni.[P0 – PEi] + Ni.t[P1 - P0]      = 0
    Ni.[P0 – PEi] + Ni∙tD      = 0 (substituting D for [P1 - P0])
    Ni.[P0 – PEi]     = - Ni∙tD
    The equation for t becomes,
    t=Ni.[PoPEi]Ni.D
    It is valid for the following conditions −
    • Ni ≠ 0 errorcannothappen
    • D ≠ 0 (P1 ≠ P0)
    • Ni∙D ≠ 0 (P0P1 not parallel to Ei)







    कोई टिप्पणी नहीं:

    एक टिप्पणी भेजें